

TECNOLOGIE PER L'INNOVAZIONE - INDUSTRIE 4.0

23-25 NOVEMBRE 2021

BOLOGNA FIERE

Additive manufacturing e tecnologie Cyber-physical per la MECcatronica del futuro

romagnatech

la Ricerca Applicata e i Servizi nel Settore della Meccanica Avanzata

JNIMORE

Progetto cofinanziato dalla Regione Emilia-Romagna (POR - FESR 2014 - 2020)

MILIA-ROMAGN

Laboratories and innovation centers:

Project leader:

Partners:

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA CENTRO INTERDIPARTIMENTALE DI RICERCA INDUSTRIALE MECCANICA AVANZATA E MATERIALI

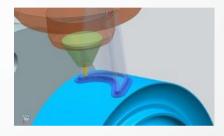
Centro Interdipartimentale per la Ricerca Applicata e i Servizi nel Settore della Meccanica Avanzata e della Motoristica INTERMECH

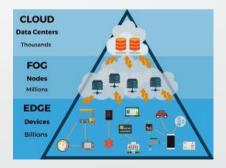
Industrial partners:

Premise

Industry 4.0 leads to innovation:

- above mechatronics
 - High levels of the industrial automation pyramid
 - IoT / Big data / Cloud / AI for the optimized process management
- *beside* mechatronics
 - Digital Twin
 - Functional design
 - Virtual Training
 - Predictive Maintenance

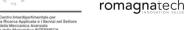



Project Goal

To develop innovative solutions for mechatronics:

- Additive manufacturing for innovative and customized mechanisms and actuators, leading to:
 - minimal material and energy consumption
 - sustainable production of small batches

• Edge-computing-based Cyber-physical technologies to enable the control algorithms for the proposed innovative structures


High-performance nonlinear mechanisms for automatic machines

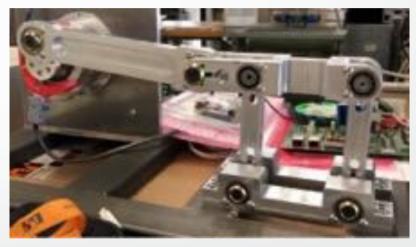
Involved research teams:

- Structural design: team of Prof. Rocco Vertechy (UNIBO - DIN)
- Control design: team of Prof. Andrea Tilli, ACTEMA (UNIBO - DEI)

SITÀ DI BOLOGNA NTERDIPARTIMENTALE IRCA INDUSTRIALE WANZATA E MATERIALI MARCATA E MATERIALI

INIMORE

Progetto cofinanziato dalla Regione Emilia-Romagna (POR - FESR 2014 - 2020)

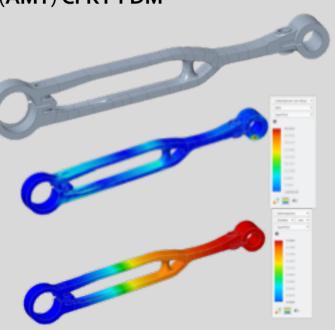

Servomechanisms for automatic machines

Repetitive tasks

 Mechanisms subject to predominantly inertial loads

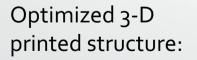
ACMEC Objectives:

- Optimization of the mechanical structure for **motor torque and vibration reduction**
- Accurate tracking through internal model and repetitive control.



Structural optimization for motor torque reduction

Topology optimization (TO) + **Additive** Manufacturing Technologies (AMT) CFRT-FDM



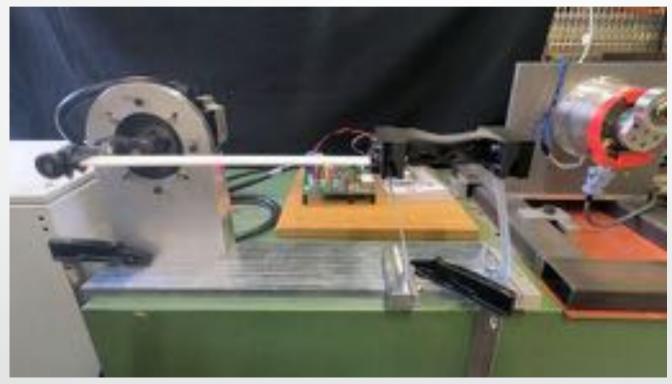
Topology optimization


Initial aluminum structure:

New approach for structural design

- FDM printing of CFRT
- **Replacement** of the majority of rigid links and traditional kinematic pairs with **compliant joints** (**flexible laminas**)
- Mass reduction for the bulky and stiff parts of the mechanism via topology optimization
- **Dimensioning** the **compliant joints** to make the mechanism operate in a "resonating" condition

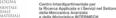
Torque comparison:


	SO	ТО	Lamina
MT Peak Value [Nm]	2.5	2.1	0.3
Reduction	13%	27%	89%
	a rap		

Advanced control for accurate periodic motion

Repetitive, internal model, adaptive, and constrained techniques

Involved research teams:

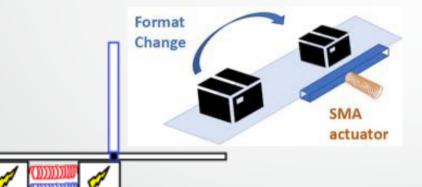

JNIMORE

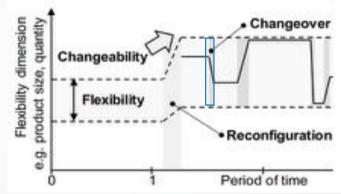
- Structural design: team of Prof. Andrea Zucchelli (UNIBO - DIN)
- Control design: team of Prof. Andrea Tilli, ACTEMA (UNIBO - DEI)

romagnatech

Shape Memory Alloy Modeling and Actuators

Progetto cofinanziato dalla Regione Emilia-Romagna (POR - FESR 2014 - 2020)




SMA in Automatic Machines

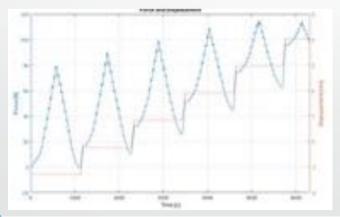
A new actuation system for an Automatic and Smart **Format Changeover**

SMAs Advantages

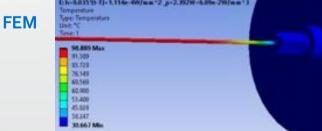
- Simple mechanical design
- High force to mass ratio

ACMEC Objectives

- Development of control strategies based on a **novel Constitutive Model designed** for the application
- Design of smart structural elements of automatic machines using **SMA** integrated actuators and sensors

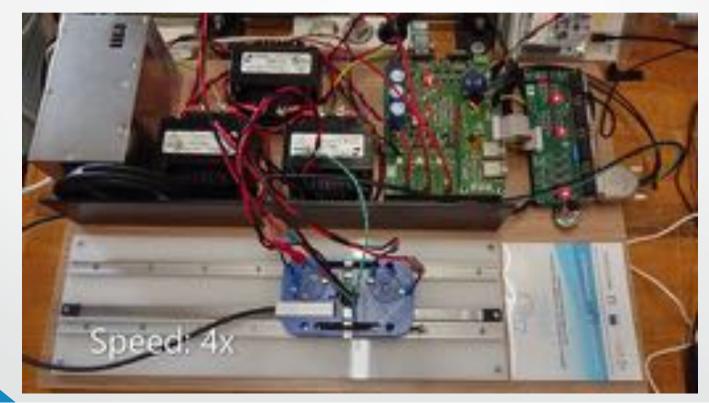

SMA - How it works Modeling for control

- LARDRIVE • Temperature • Custom
- Pt 100 -
- Current (I,V) Made Drive
 - MTS I/O
- MTS • Testing
- Force LoadCell - S-type
- Displacement
- External •


Machine

Temp. distribution Thermocamera

Results



SMA - Prototype

Large Displacements Actuator Alternating Locomotion System

Activities of the electric machines research group (UNIBO - DEI)

romagnatech

MEC

- Ing. Giacomo Sala
- Ing. Gabriele Rizzoli
- Prof. Michele Mengoni

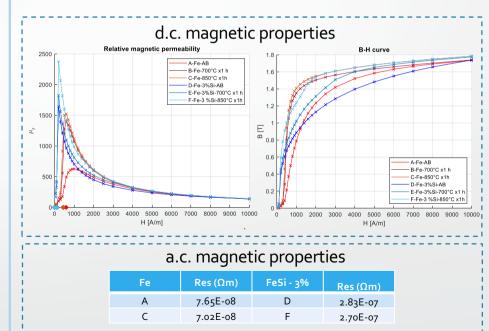
UNIMORE

Centro Interdipartimentale per la Ricerca Applicata e i Servizi nel Settore della Meccanica Avanzata e della Motoriatica INTERMECH

- Prof. Luca Zarri
- Prof. Angelo Tani

Optimized design of a synchronous reluctance machine rotor

Progetto cofinanziato dalla Regione Emilia-Romagna (POR - FESR 2014 - 2020)

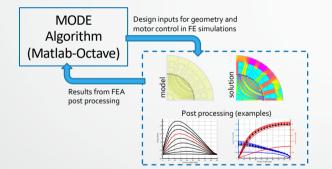


Electromagnetic characterization

Magnetic samples with primary and secondary coils for measurements.

IEC 60404-4: Magnetic materials - Part 4: Methods of measurement of d.c. magnetic properties of iron and steel.

Indirect evaluation of material resistivity.


Credits: Spin Applicazioni Magnetiche

Electromagnetic design

Design mainly based on the use of the open source software Syr-e and Femm4.2.

MODE (Multi-Objective Differential Evolution) optimization algorithm. Optimization based on Finite Element non-linear simulations.

Optimization results: example of selected motors in one step of the design workflow. Local search of the optimum orque ripple [10*Nm] motor layout is obtained with a reduced range of parameter values around the optimal of the global search. 0.5 -1.545 -1.544 -1.543 -1.542 -1.541 -1.54 -1.539 -1.538 Torque [Nm] Torque [Nm] \rightarrow ripple pk-pk < 5 % Prototype layout

15 30 45 60 75 90

Activities of the metallurgy research group (UNIBO - DIN)

romagnatech

- Prof. Lorella Ceschini
- Ing. Lavinia Tonelli
- Ing. Mattia Zanni

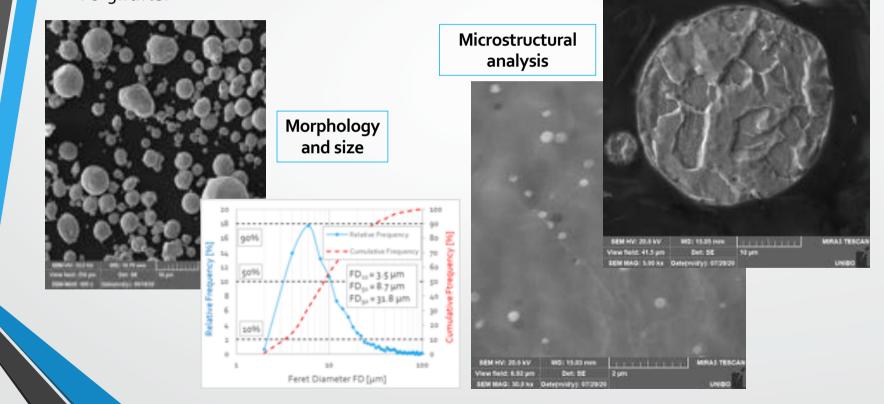
Study of materials for additive manufacturing of mechatronic systems

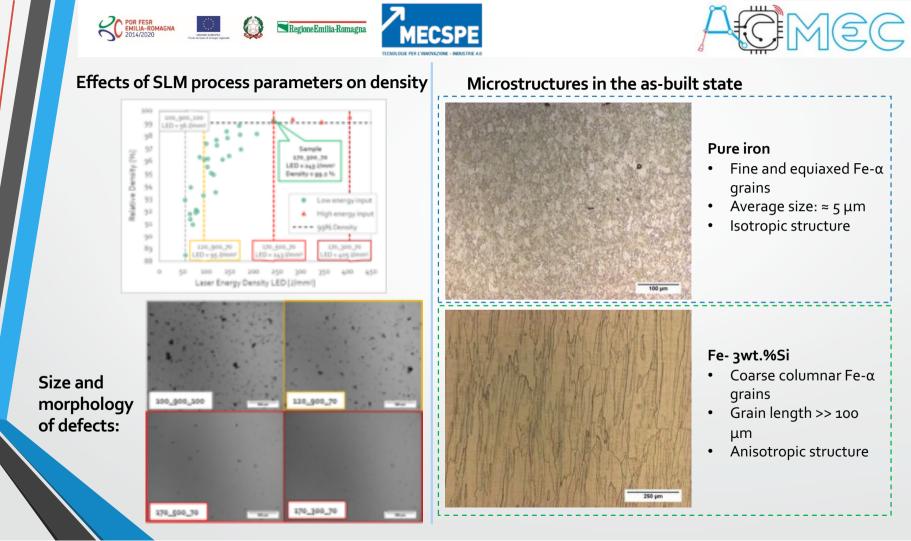
INTERDIPARTIMENTALE IA RIG ICERCA INDUSTRIALE della CA AVANZATA E MATERIALI

Centro Interdipartimentale per la Ricerca Applicata e i Servizi nel Settore della Meccanica Avanzata della Meccanica IVITERMECHI

UNIMORE

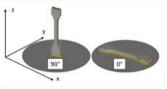
Progetto cofinanziato dalla Regione Emilia-Romagna (POR - FESR 2014 - 2020)

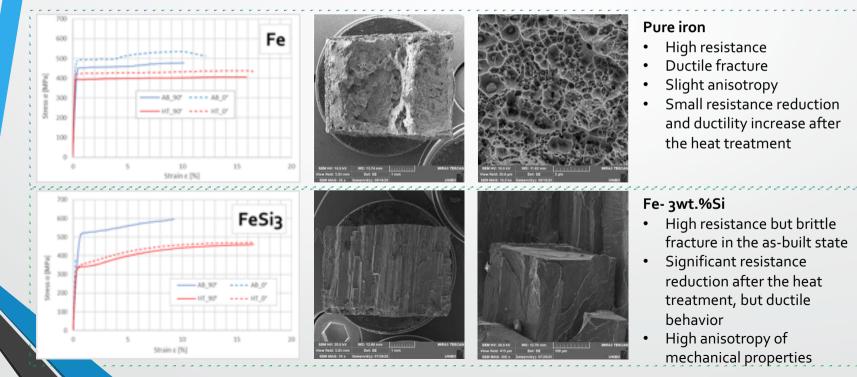




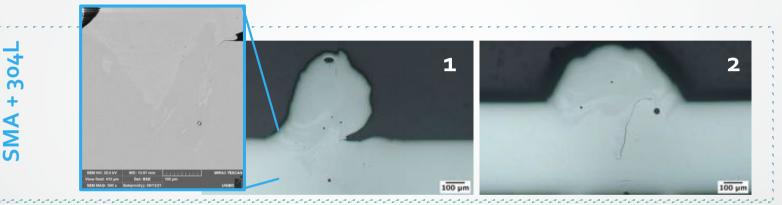
Characterization of dusts for SLM:

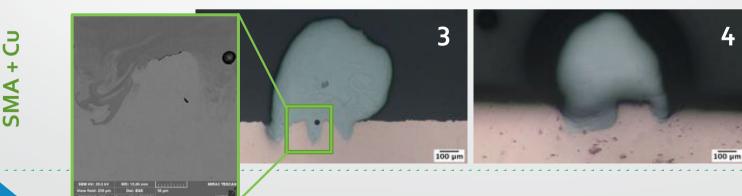
- Pure iron
- Fe- 3wt.%Si





Traction behavior of the of as-built (AB) state and after the heat treatment (850 °C for 1 h, HT), along different growth directions





Microstructural characterization of laser welding of Shape Memory Alloys (SMA) NiTi with substrates:

- Austenitic stainless steel 304L
- Pure copper

2

Activities of the technology research group (UNIBO - DIN)

romagnatech

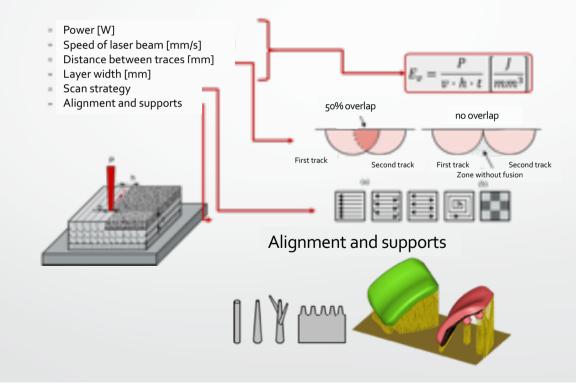
Prof. Alessandro Fortunato

JNIMORE

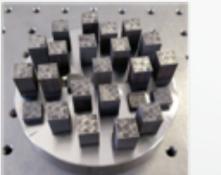
Ing. Giuseppe Valli

Additive manufacturing technologies for synchronous reluctance machine rotors

SITÀ DI BOLOGNA NTERDIPARTIMENTALE IRCAINDUSTRIALE ERCAINDUSTRIALE UNANZATA E MATERIAL a della Maccanica Avanzata a valora della Maccanica Avanzata Progetto cofinanziato dalla Regione Emilia-Romagna (POR - FESR 2014 - 2020)



Study and optimization of LPBF process parameters



Sample realization for the mechanic and magnetic characterization

Parallelepipeds for density, hardness, and roughness analysis

Toroids for magnetic characterization

Thin surfaces

Dog bone samples for static traction tests

Rotor production and treatment

Production through LPBF technology

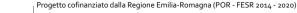
Finite product assembly

Heat treatment*

Activities of the ACTEMA research group (UNIBO - DEI)

romagnatech

MEC


Coordinated by Prof. Andrea Tilli

High-performance edgecomputing platform for next-generation mechatronics

Centro Interdipartimentale per la Ricerca Applicata e i Servizi nel Settore della Morcanica Avanzata e della Motoristica INTERMECH

ACMEC-Drive, 48V Multi-Axes Edge-Computing-Enabled Electric Drive

100 Apeak

Idea:

- To exploit innovative edge-computing processors
 - Pros: high computational power and flexibility
 - Cons: no-RT or soft-RT
- To move toward high-freq MOSFET: GaN

Main features:

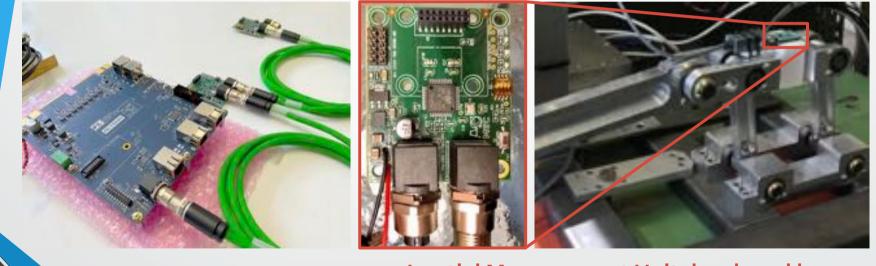
- Computation & Communication Unit (CCU):
 - Dual-Core ARM Cortex-A7 @ 800MHz
 - Single-Core ARM Cortex-M4 @ 209MHz
 - EtherCAT Slave + GbEthernet (EtherCAT Master)
 - XMI (External) Interface
 - 4xUSB Hub, 1xUSB Host, 1x HDMI, 1x CAN
- Up to 6 Actuation Units (AU) three-phase + brake:
 - Operating DC-Link voltage: 24 ... 48 V
 - Nominal Single-Phase current: 20 Arms
 - Peak Single-Phase current:
- Backplane for power distribution and high-speed hard-RT interfacing

The ACMEC-Drive CCU is the Master of the ACMEC-Drive:

- Taking advantage of SOMs for IoT / HMI devices
- STM32MP157F/A Dual-Core MPU + Single-Core MCU:
 - 1xCortex-M4 @ 209 MHz
 - Rich set of Connectivity Peripherals
 - 2xCortex-A7 @ 800 MHz (650MHz A-Variant)
 - Non Real-Time OpenST Linux
 - Rich set of High-Level features
 - 1xVivante-GPU @ 533 MHz
 - Linux drivers to power HMI features

- CHANGE ITS ORGANIZATION PARADIGM:

- Cortex-M4
 - Board and Real Time master by our RTOS AEON-RT
- 1 Cortex A7 Linux
 - Non-RT services
- 1 Cortex A7 bare-metal
 - Computation-slave for high performance control
 - Jailhouse hypervisor and other elements to avoid L2-cache interference



XMI Expansion Interface, connecting the ACMEC-Drive CCU to multiple external devices through a **10Mbps Hard Real-Time** ACTEMA Proprietary Bus with **Power Delivery** (12V, 36W)

• Deployment of distributed 5KHz Sample Rate 6DoF IMUs (XMI boards in photo)

Inertial Measurement Unit developed by Romagna Tech

ACMEC-Drive AU, GaN Based Electric Drive for three-phase motors with brake configurable to four independent half-bridges:

- Single-Core ARM Cortex-M4 @ 180MHz with CORDIC DSP
- Operating DC-Link voltage: 24 ... 48 V
- GaN Nominal Half-Bridge current: 20 Arms
- GaN Peak Single-Phase current: 100 Apeak
- GaN Power Stage Switching (PWM): > 200 KHz
- 2 Encoder Slots supporting BISS-C, SSI, ABZ Incremental
- XMI, USB-Serial, USB-FS Device/Host and CAN Bus Intf.s EtherCAT Slave Stack DSP402 (AoE, MDP, CoE)
 - For STAND-ALONE applications

